
Quantum games with correlated noise

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 9321

(http://iopscience.iop.org/0305-4470/39/29/022)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 03/06/2010 at 04:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/29
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 9321–9328 doi:10.1088/0305-4470/39/29/022

Quantum games with correlated noise

Ahmad Nawaz and A H Toor

Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan

E-mail: ahmad@ele.qau.edu.pk and ahtoor@qau.edu.pk

Received 5 April 2006, in final form 25 May 2006
Published 5 July 2006
Online at stacks.iop.org/JPhysA/39/9321

Abstract
We analyse quantum games with correlated noise through a generalized
quantization scheme. Four different combinations on the basis of entanglement
of initial quantum state and the measurement basis are analysed. It is shown
that the quantum player only enjoys an advantage over the classical player
when both the initial quantum state and the measurement basis are in entangled
form. Furthermore, it is shown that for maximum correlation the effects of
decoherence diminish and it behaves as a noiseless game.

PACS numbers: 03.67.−a, 03.65.Bz

1. Introduction

It requires the exchange of qubits between the arbiter and players to play quantum games.
The transmission of a qubit through a channel is generally prone to decoherence due to its
interaction with the environment. In the game theoretic sense this situation can be imagined
as though there is a demon present between the arbiter and the players who corrupt the qubits.
The players are not necessarily aware of the actions of the demon [1]. This type of protocol was
first applied to quantum games to show that above a certain level of decoherence the quantum
player has no advantage over a classical player [2]. Later, a quantum version of Prisoners’
Dilemma was analysed in the presence of decoherence to prove that Nash equilibrium is
not affected by decoherence [3]. Recently, Flitney and Abbott [4] showed for the quantum
games based on dephasing quantum channel that the advantage that a quantum player enjoys
over a classical player diminishes as decoherence increases and vanishes for the maximum
decoherence.

In this paper, we analyse the quantum games based on the quantum correlated dephasing
channel in the context of our generalized quantization scheme for non-zero sum games [5]. We
identified four different combinations on the basis of initial state entanglement parameter, γ,

and the measurement parameter, δ, for some quantum games. It is shown that for γ = δ = 0
the game reduces to the classical and becomes independent of decoherence and memory
effects. For the case when γ �= 0, δ = 0, the scheme reduces to Marinatto and Weber
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quantization scheme [6]. It is interesting to note that though the initial state is entangled, the
quantum player has no advantage over the classical player. The same happens for the case
of γ = 0, δ �= 0. However, for the case when γ = δ = π

2 , the scheme transforms to the
Eisert’s quantization scheme [7] and the quantum player always remains better off against a
player restricted to classical strategies. Furthermore, in the limit of maximum correlation the
effect of decoherence vanishes and the quantum game behaves as a noiseless game. Some
interesting readings on quantum games can also be found in [8].

The paper is organized as follows: section 2 deals with the quantization of quantum games
in the presence of correlated noise and a brief introduction to some classical games of interest
is given in the appendix.

2. Quantization in the presence of correlated noise

Decoherence is a non-unitary dynamics that results due to the coupling of principal system with
the environment. One of the important type of decoherence is phase damping or dephasing. It
is uniquely quantum mechanical and describes the loss of quantum information without loss of
energy. The energy eigenstate of the system does not change as a function of time during this
process but the system accumulates a phase proportional to the eigenvalue. With the passage
of time the relative phase between the energy eingenstates may lose.

In a pure dephasing process, a qubit transforms as

c |0〉 + b |1〉 → c |0〉 + b eiφ|1〉 (1)

where φ is the phase kick. If this phase kick, φ is assumed to be a random variable with
Gaussian distribution of mean zero and variance 2λ then the density matrix of the system after
averaging over all the values of φ is [11][|a|2 ab∗

a∗b |b|2
]

→
[ |a|2 ab∗ e−λ

a∗b e−λ |b|2
]

. (2)

It is evident from the above equation that in this process the phase kicks cause the off-diagonal
elements of the density matrix to decay exponentially to zero with time. In the operator sum
representation, the dephasing process can be expressed as [10, 11]

ρf =
1∑

i=0

AiρinA
†
i (3)

where

A0 =
√

1 − p

2
I, A1 =

√
p

2
σz (4)

are the Kraus operators, I is the identity operator and σz is the Pauli matrix. Recognizing
1−p = e−λ, let N qubits be allowed to pass through such a channel then equation (3) becomes

ρf =
N∑

k1,...,kn=0

(
Akn

⊗ · · ·Ak1

)
ρin

(
A

†
k1

⊗ · · · A†
kn

)
. (5)

Now if noise is correlated with the memory of degree µ, which varies from 0 to 1 and
gives the correlation strength of the quantum channel, then the Kraus operator for two-qubit
system becomes [12]

Ai,j = √
pi[(1 − µ)pj + µδij ]σi ⊗ σj (6)

where i, j = 0 and z with σ0 = I . Physically, this expression means that with the probability
1 − µ the noise is uncorrelated and can be completely specified by the Kraus operators
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Au
i,j = √

pipjσi ⊗ σj , whereas with the probability µ the noise is correlated and is specified
by Kraus operators of the form Ac

ii = √
piσi ⊗ σj .

The protocol for quantum games in the presence of decoherence is developed in [4].
An initial entangled state is prepared by the arbiter and passed on to the players through
a dephasing quantum channel. On receiving the quantum state, players apply their local
operators (strategies) and return it back to arbiter through dephasing quantum channel. Then,
arbiter performs the measurement and announces their payoffs.

Let the game start with the initial quantum state:

|ψin〉 = cos
γ

2
|00〉 + i sin

γ

2
|11〉 . (7)

The strategies of the players in the generalized quantization scheme are represented by the
unitary operator Ui of the form [5]

Ui = cos
θi

2
Ri + sin

θi

2
Pi, (8)

where i = 1 or 2 and Ri, Pi are the unitary operators defined as

Ri |0〉 = eiαi |0〉, Ri |1〉 = e−iαi |1〉,
Pi |0〉 = ei( π

2 −βi)|1〉, Pi |1〉 = ei( π
2 +βi)|0〉, (9)

where 0 � θ � π,−π � α, β � π. Here, we extend our earlier generalized quantization
scheme to three-parameter strategy set in accordance with [4]. After the application of these
strategies, the initial state given by equation (7) transforms to

ρf = (U1 ⊗ U2)ρin(U1 ⊗ U2)
†, (10)

where ρin = |ψin〉 〈ψin| is the density matrix for the quantum state. The operators used by the
arbiter to determine the payoff for Alice and Bob are

P = $00P00 + $01P01 + $10P10 + $11P11, (11)

where

P00 = |ψ00〉〈ψ00|, |ψ00〉 = cos(δ/2)|00〉 + i sin(δ/2)|11〉, (12a)

P11 = |ψ11〉〈ψ11|, |ψ11〉 = cos(δ/2)|11〉 + i sin(δ/2)|00〉, (12b)
P10 = |ψ10〉〈ψ10|, |ψ10〉 = cos(δ/2)|10〉 − i sin(δ/2)|01〉, (12c)
P01 = |ψ01〉〈ψ01|, |ψ01〉 = cos(δ/2)|01〉 − i sin(δ/2)|10〉, (12d)

with δ ∈ [
0, π

2

]
and $ij are the elements of payoff matrix in the ith row and j th column (given

in the appendix for different games). Above payoff operators reduce to that of Eisert’s scheme
for δ equal to γ, which represents the entanglement of the initial state [7]. And for δ = 0 the
above operators transform into that of Marinatto and Weber’s scheme [6]. In our extended
generalized quantization to three set of parameters scheme, payoffs for the players are

$A(θi, αi, βi) = Tr(PAρf ), $B(θi, αi, βi) = Tr(PBρf ), (13)

where Tr represents the trace of a matrix. Using equations (6), (7), (11) and (13), the payoffs
come out to be

$(θi, αi, βi) = c1c2
[
η$00 + χ$11 + ($00 − $11)µ

(1)
p µ(2)

p ξ cos 2(α1 + α2)
]

+ s1s2
[
η$11 + χ$00 − ($00 − $11)µ

(1)
p µ(2)

p ξ cos 2(β1 + β2)
]

+ c1s2
[
η$01 + χ$10 + ($01 − $10)µ

(1)
p µ(2)

p ξ cos 2(α1 − β2)
]

+ c2s1
[
η$10 + χ$01 − ($01 − $10)µ

(1)
p µ(2)

p ξ cos 2(α2 − β1)
]
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+
µ(2)

p ($00 − $11)

4
sin θ1 sin θ2 sin δ sin(α1 + α2 + β1 + β2)

+
µ(2)

p ($10 − $01)

4
sin θ1 sin θ2 sin δ sin(α1 − α2 + β1 − β2)

+
µ(1)

p (−$00 − $11 + $01 + $10)

4
sin θ1 sin θ2 sin γ sin(α1 + α2 − β1 − β2) (14)

where

η = cos2(δ/2) cos2(γ /2) + sin2(δ/2) sin2(γ /2),

χ = cos2(δ/2) sin2 γ

2
+ sin2(δ/2) cos2(γ /2),

ξ = 1/2(sin δ sin γ ), ci = cos2 θi

2
,

si = sin2 θi

2
, µ(i)

p = (1 − µi)(1 − pi)
2 + µi.

The payoff for the two players can be found by substituting the appropriate values for $ij

(elements of the payoff matrix for the corresponding game) into equation (14). These payoffs
become the classical payoffs for δ = γ = 0 and for δ = γ = π

2 and µ = 0 these payoffs
transform to the results given in [4]. It is known that decoherence has no effect on the Nash
equilibrium of the game but it causes a reduction in the payoffs [3, 4]. In our case, it is
interesting to note that this reduction of the payoffs depends on the degree of memory µ.

As µ increases from zero to one, the effect of noise reduces until finally for µ = 1 the
payoffs become as that for noiseless game irrespective of any value of pi . It is further noted
that in comparison to memoryless case [4] the quantum phases αi, βi do not vanish even for
the maximum value of decoherence, i.e., for p1 = p2 = 1. To further study the effects
of memory in quantum games, we consider a situation in which Alice is restricted to play
classical strategies, i.e., α1 = β1 = 0, whereas Bob is allowed to play the quantum strategies
as well. Under these circumstances following four cases for the different combinations of δ

and γ are worth noting:

Case (i). When δ = γ = 0 then it is clear from equation (14) payoffs are the same as in
the case of classical game [9]. These payoffs, as expected, are independent of the dephasing
probabilities pi , the quantum strategies α2, β2 and the memory.

Case (ii). When δ = 0, γ �= 0 then η = cos2 γ

2 , χ = sin2 γ

2 and ξ = 0. Using payoff matrix
for the game of Prisoners Dilemma, given in the appendix, and equation (14), the payoffs for
the two players are

$A(θ1, θ2, α2, β2) = c1c2

(
3 − 2 sin2 γ

2

)
+ s1s2

(
1 + 2 sin2 γ

2

)
+ 5c1s2 sin2 γ

2

+ 5c2s1

(
1 − sin2 γ

2

)
+

µ(1)
p

4
sin θ1 sin θ2 sin γ sin(α2 − β2)

$B(θ1, θ2, α2, β2) = c1c2

(
3 − 2 sin2 γ

2

)
+ s1s2

(
1 + 2 sin2 γ

2

)
+ 5c1s2

(
1 − sin2 γ

2

)

+ 5c2s1 sin2 γ

2
+

µ(1)
p

4
sin θ1 sin θ2 sin γ sin(α2 − β2). (15)

In this case, the optimal strategy for the quantum player, Bob, is α2 − β2 = π
2 . Though his

choice for θ2 depends on Alice’s choice for θ1, but he can play θ2 = π
2 , without being bothered

about Alice’s choice as rational reasoning leads Alice to play θ1 = π
2 . Under these choices of
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moves the payoffs for the two players are equal:

$A
(π

2
,
π

2
, α2 − β2 = π

2

)
= $B

(π

2
,
π

2
, α2 − β2 = π

2

)
= 9

4
+

µ(1)
p

4
sin γ. (16)

It is evident that the quantum player has no advantage over the classical player. Similarly, for
the Chicken game the payoffs for the two players are

$A(θ1, θ2, α2, β2) = c1c2

(
3 − 3 sin2 γ

2

)
+ s1s2

(
3 sin2 γ

2

)
+ c1s2

(
3 sin2 γ

2
+ 1

)

+ c2s1

(
4 − 3 sin2 γ

2

)
+

µ(1)
p

2
sin θ1 sin θ2 sin γ sin(α2 − β2) (17)

$B(θ1, θ2, α2, β2) = c1c2

(
3 − 3 sin2 γ

2

)
+ s1s2

(
3 sin2 γ

2

)
+ c1s2

(
4 − 3 sin2 γ

2

)

+ c2s1

(
1 + 3 sin2 γ

2

)
+

µ(1)
p

2
sin θ1 sin θ2 sin γ sin(α2 − β2) (18)

and it can be shown using the same argument as for the game of Prisoner Dilemma that the
quantum player does not have any advantage over classical player in the Chicken game as
well.

For the case of the quantum Battle of Sexes, the payoffs become

$A(θ1, θ2, α2, β2) = c1c2

(
2 − sin2 γ

2

)
+ s1s2

(
1 + sin2 γ

2

)

− 3µ(1)
p

4
sin θ1 sin θ2 sin γ sin(α2 − β2)

$B(θ1, θ2, α2, β2) = c1c2

(
1 + sin2 γ

2

)
+ s1s2

(
2 − sin2 γ

2

)

− 3µ(1)
p

4
sin θ1 sin θ2 sin γ sin(α2 − β2). (19)

Here, the optimal strategy for Bob is α2 − β2 = −π
2 and θ2 = π

2 , keeping in view that the
best strategy for Alice is θ1 = π

2 . The corresponding payoffs of the players are again equal for
these choices, i.e.,

$A
(π

2
,
π

2
, α2 − β2 = −π

2

)
= $B

(π

2
,
π

2
, α2 − β2 = −π

2

)
= 3

4
+

3

4
µ(1)

p sin γ. (20)

It is clear that for the case δ = 0, γ �= 0 the quantum player has no advantage over the
classical player for three games considered above. It is interesting because the game starts
from an entangled state and the payoffs are also the functions of the quantum phases, αi, βi,

dephasing probability, p1, and the degree of memory, µ1, of the quantum channel between
Bob and arbiter.

Case (iii). When δ �= 0, γ = 0 then using equation (14) the payoffs for the two players in
games of Prisoners Dilemma, Chicken and Battle of Sexes are

$A(θ1, θ2, α2, β2) = c1c2

(
3 − 2 sin2 δ

2

)
+ s1s2

(
1 + 2 sin2 δ

2

)

+
7µ(2)

p

4
sin θ1 sin θ2 sin δ sin(α2 + β2)

$B(θ1, θ2, α2, β2) = c1c2

(
1 + sin2 δ

2

)
+ s1s2

(
2 − sin2 δ

2

)

− 3µ(2)
p

4
sin θ1 sin θ2 sin δ sin(α2 + β2), (21)
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$A(θ1, θ2) = c1c2

(
3 − 3 sin2 δ

2

)
+ s1s2

(
3 sin2 δ

2

)

+ c1s2

(
1 + 3 sin2 δ

2

)
+ c2s1

(
4 − 3 sin2 δ

2

)

$B(θ1, θ2, α2, β2) = c1c2

(
3 − 3 sin2 δ

2

)
+ s1s2

(
3 sin2 δ

2

)
+ c1s2

(
4 − 3 sin2 δ

2

)

+ c2s1

(
1 + 3 sin2 δ

2

)
+

3µ(2)
p

2
sin θ1 sin θ2 sin δ sin(α2 + β2), (22)

$A(θ1, θ2, α2, β2) = c1c2

(
2 − sin2 δ

2

)
+ s1s2

(
1 + sin2 δ

2

)

+
3µ(2)

p

4
sin θ1 sin θ2 sin δ sin(α2 + β2)

$B(θ1, θ2, α2, β2) = c1c2

(
1 + sin2 δ

2

)
+ s1s2

(
2 − sin2 δ

2

)

− 3µ(2)
p

4
sin θ1 sin θ2 sin δ sin(α2 + β2), (23)

respectively. It is evident from the above expressions for the payoffs that the optimal strategy
for Bob, the quantum player, is α2 + β2 = −π

2 , with θ2 = π
2 , for Prisoners Dilemma and

Battle of Sexes. But corresponding payoff for Alice is less. However, she can overcome this
by playing θ1 = 0 or π, so that the payoffs for both the players become independent of the
quantum phases α2, β2. So there remains no option for the quantum player to enhance his
payoff by exploiting the quantum move. However, in the case of Chicken game the quantum
player can enhance his payoff without affecting the payoff of the classical player. But again
the classical player has the ability to prevent quantum strategies by playing θ1 = 0 or π. So,
there remains no advantage for playing quantum strategies. It is also interesting to note that
though by playing this move Alice could force the payoffs of the two players to be independent
of dephasing factor p2 and the degree of memory µ2, however, the game remains different
from its classical counterpart.

Case (iv). When δ = γ = π
2 then equation (14) with µ1 = µ2 = 0 gives the same results as

mentioned in [4] and the quantum player is better off for p < 1. However, when decoherence
increases this advantage diminishes and vanishes for maximum decoherence, i.e., p = 1. But
in our case when µ �= 0, the quantum player is always better off even for maximum noise, i.e.,
p = 1, which was not possible in memoryless case. Furthermore, it is worth noting that as
the degree of memory increases from 0 to 1 the effect of noise on the payoffs starts decreasing
and for µ = 1 it behaves like a noiseless game. In the case of Prisoners Dilemma, the optimal
strategy for Bob is to play α2 = π

2 and β2 = 0. His choice for θ2 is π
2 , independent of Alice’s

move. The payoffs for Alice and Bob as a function of decoherence probability p1 = p2 = p

at µ = 1
2 are

$A(θ1, θ2, α2, β2) = c1c2
[
2 + µ2

p cos 2α2
]

+ s1s2
[
2 − µ2

p cos 2β2
]

+
5

2
c1s2

[
1 − µ2

p cos 2β2
]

+
5

2
c2s1

[
1 + µ2

p cos 2α2
]

+
µp

4
sin θ1 sin θ2 sin(α2 − β2) − 3µp

4
sin θ1 sin θ2 sin(α2 + β2) (24)
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$B(θ1, θ2, α2, β2) = c1c2
[
2 + µ2

p cos 2α2
]

+ s1s2
[
2 − µ2

p cos 2β2
]

+
5

2
c1s2

[
1 + µ2

p cos 2β2
]

+
5

2
c2s1

[
1 − µ2

p cos 2α2
]

+
7µp

4
sin θ1 sin θ2 sin(α2 + β2) +

µp

4
sin θ1 sin θ2 sin(α2 − β2) (25)

where

µp = 1 + (1 − p)2

2
.

It is obvious from above payoffs that quantum player Bob can always out perform Alice, for
all values of p. Similarly, for the case of Chicken and Battle of Sexes game, it can be proved
that the classical player can be out performed by Bob, at α2 = π

2 , β2 = 0 and θ2 = π
2 and

α2 = −π
2 , β = 0 and θ2 = π

2 , respectively.

3. Conclusion

Quantum games with correlated noise are studied under the generalized quantization scheme
[5]. Three games, Prisoner Dilemma, Battle of Sexes and Chicken are studied with one
player restricted to the classical strategy while the other is allowed to play quantum strategies.
It is shown that the effects of the memory and decoherence become effective for the case
γ = δ = π

2 , for which the quantum player out performs the classical player. It is also shown
that memory controls payoffs reduction due to decoherence and for the limit of maximum
memory decoherence becomes ineffective.

Appendix. Some classical games

Here, we briefly describe three classical games on interest.

Prisoner’s Dilemma
This game depicts a situation where two suspects (players), who have committed a crime
together, are being interrogated in a separate cell. The two possible moves for each player
are to cooperate (C), i.e., not to confess the crime or to defect (D), i.e., to confess the crime
without any communication between them but having access to the following payoff matrix:

Bob
C D

Alice
C

D

[
(3, 3) (0, 5)

(5, 0) (1, 1)

]
. (A.1)

It is obvious from the payoff matrix (A.1) that D is the dominant strategy for the two players.
Therefore, rational reasoning forces the players to play D. Thus, (D,D) is the Nash equilibrium
of this game with payoffs (1, 1). But the players could get higher payoffs if they would have
played C instead of D. This is the dilemma in this game.

The Chicken game
The payoff matrix for this game is

Bob
C D

Alice
C

D

[
(3, 3) (1, 4)

(4, 1) (0, 0)

]
. (A.2)



9328 A Nawaz and A H Toor

In this game two players drove their cars towards each other. The first one to swerve to avoid
collision is the loser (Chicken) and the one who keeps on driving straight is the winner. The
two possible strategies for each player are C (Cooperate) to swerve and D (Defect) not to
swerve. There is no dominant strategy in this game. There are two Nash equilibria (C,D)

and (D,C), the former is preferred by Bob and the latter is preferred by Alice. The dilemma
of this game is that the Pareto optimal strategy (C,C) is not Nash equilibrium.

Battle of Sexes
The payoff matrix for this game is

Bob
O T

Alice
O

T

[
(2, 1) (0, 0)

(0, 0) (1, 2)

]
. (A.3)

In the usual exposition of this game Alice is fond of Opera whereas Bob likes watching TV
but they also want to spend the evening together. In the absence of communication they face
a dilemma in choosing their strategies. In the game matrix (A.3) O and T represent Opera and
TV, respectively.
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